If you are not already a subscriber, you are welcome to enter your email address here to sign up to receive the Space History newsletter on a daily basis. Under no circumstances will we release your legitimate email address entered here to outside persons or organizations, and it will only be used for mailing the specific information you have requested.

Enter your email address here:
 

Unsubscribe instructions are included in every newsletter issue in case you decide you no longer wish to receive it.

Note: We record the IP address from which subscriptions are entered to help prevent SPAM abuses.


Race To Space
Someone will win the prize...
               ... but at what cost?
Visit RaceToSpaceProject.com to find out more!


1774
English chemist Joseph Priestley identified an elemental gas that turned out to be oxygen, although he erroneously dubbed it "dephlogisticated air."
ref: www.mentalfloss.com

1786
Caroline Herschel became the first woman generally credited with discovering a comet when she discovered Comet C/1786 P1.

Caroline Lucretia "Lina" Herschel (16 March 1750 - 9 January 1848) was an astronomer who discovered eight comets on her own, in addition to recording the observations and doing calculations on the data of her astronomer brother William. On 1 August 1786, Caroline discovered her first comet, generally credited with becoming the first woman to earn this distinction.
ref: en.wikipedia.org
ref: mathshistory.st-andrews.ac.uk

1818
Born, Maria Mitchell, astronomer, first faculty appointment at Vassar College
ref: en.wikipedia.org

1877
A. Borrelly discovered asteroid #173 Ino.

1914
Born, Emil A. H. Hellebrandt, German guided missile expert during World War II, then a member of the German Rocket Team in the US for the rest of his life, at Fort Bliss, White Stands, and Huntsville
ref: www.nytimes.com

1918
M. Wolf discovered asteroid #896 Sphinx.

1929
C. Jackson discovered asteroid #1186 Turnera; E. Skvortsov discovered asteroid #1149 Volga.

1935
Died, Arthur D. Little, US chemist (patented rayon, instrumental in developing chemical engineering at the Massachusetts Institute of Technology), founded a consulting company where solar power satellites were first proposed (among other things)
ref: en.wikipedia.org

1936
Died, Louis Bleriot, aviation pioneer (first successful monoplane, first flight over a large body of water in a heavier-than-air craft - English Channel, 25 July 1909)
ref: en.wikipedia.org

1937
C. Jackson discovered asteroid #1432 Ethiopia.

1944
Born, Yuri Viktorovich Romanenko (at Koltubanovski, Orenburg Oblast, Russian SFSR), Soviet cosmonaut (Salyut 6 EO-6, Salyut 6 EP-8, Mir 2; over 430d 18.3h total time in spaceflight)
Cosmonauts Yuri Romanenko (right) and G. M. Grechko on a 1978 USSR postage stamp Source: Wikipedia USSR_Stamp_1978_Salyut6_Cosmonauts.jpg
Cosmonauts Yuri Romanenko (right) and G. M. Grechko on a 1978 USSR postage stamp
Source: Wikipedia
ref: www.spacefacts.de

1946
Born, Richard Oswalt "Dick" Covey (at Fayetteville, Arkansas, USA), Colonel USAF, NASA astronaut (STS 51-I, STS 26, STS 38, STS 61; over 26d 21h total time in spaceflight)
Astronaut Dick Covey, NASA photo Source: Wikipedia (www.jsc.nasa.gov unavailable August 2019) Covey.jpg
Astronaut Dick Covey, NASA photo
Source: Wikipedia (www.jsc.nasa.gov unavailable August 2019)
ref: www.nasa.gov

1963
Born, Koichi Wakata (at Omiya, Saitama, Japan), JAXA/NASA astronaut (STS 72, STS 92, ISS 18/19/20, ISS 38/39 (39 Commander); 347d 8.5h total time in spaceflight)
JAXA astronaut Koichi Wakata, NASA photo (19 March 2007)Source: Wikipedia 384px-Koichi_wakata.jpg
JAXA astronaut Koichi Wakata, NASA photo (19 March 2007)
Source: Wikipedia
ref: iss.jaxa.jp

1967 21:32:00 GMT
NASA launched Lunar Orbiter 5 to the Moon, the final spacecraft in Lunar Orbiter series.

Lunar Orbiter 5, the last of the Lunar Orbiter series, launched 1 August 1967, was designed to take additional Apollo and Surveyor landing site photographs, and to take broad survey images of unphotographed parts of the Moon's far side. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data, and was used to evaluate the Manned Space Flight Network tracking stations and Apollo Orbit Determination Program. The Deep Space Net Tracking Station at Woomera, Australia, acquired the spacecraft about 50 minutes after liftoff. Signals indicated that all systems were performing normally and that temperatures were within acceptable limits. The spacecraft was placed in a cislunar trajectory, and on 5 August 1967 was injected into an elliptical near polar Lunar orbit 194.5 km x 6023 km with an inclination of 85 degrees and a period of 8 hours 30 minutes. On 7 August, the perilune was lowered to 100 km, and on 9 August the orbit was lowered to 99 km x 1499 km with a 3 hour 11 minute period. The photographic portion of the mission ended on 18 August.

The spacecraft took its first photograph of the moon at 6 August 7:22 AM EDT. The spacecraft acquired photographic data from 6-18 August 1967, and readout occurred until 27 August 1967. A total of 633 high resolution and 211 medium resolution frames at resolution down to 2 meters were acquired, bringing the cumulative photographic coverage by the 5 Lunar Orbiters to 99% of the Moon's surface. Accurate data were acquired from all other experiments throughout the mission. The spacecraft was tracked until it impacted the Lunar surface on command at 2.79 degrees S latitude, 83 degrees W longitude (selenographic coordinates) on 31 January 1968.

The main bus of the Lunar Orbiter was approximately a truncated cone, 1.65 meters tall and 1.5 meters in diameter at the base. The spacecraft was comprised of three decks supported by trusses and an arch. The equipment deck at the base of the craft held the battery, transponder, flight progammer, inertial reference unit (IRU), Canopus star tracker, command decoder, multiplex encoder, traveling wave tube amplifier (TWTA), and the photographic system. Four solar panels were mounted to extend out from this deck with a total span across of 3.72 meters. Also extending from the base of the spacecraft were a high gain antenna on a 1.32 meter boom, and a low gain antenna on a 2.08 meter boom. Above the equipment deck, the middle deck held the velocity control engine, propellant, oxidizer and pressurization tanks, Sun sensors, and micrometeoroid detectors. The third deck consisted of a heat shield to protect the spacecraft from firing the velocity control engine. The nozzle of the engine protruded through the center of the shield. Mounted on the perimeter of the top deck were four attitude control thrusters.

375 W of power was provided by the four solar arrays containing 10,856 n/p solar cells, which could directly run the spacecraft and also charge the 12 amp-hr nickel-cadmium battery. The batteries were used during the brief periods of occultation when no solar power was available. Propulsion for major maneuvers was provided by the gimballed velocity control engine, a hypergolic 100-pound-thrust Marquardt rocket motor. Three-axis stabilization and attitude control were provided by four one-lb nitrogen gas jets. Navigational knowledge was provided by five Sun sensors, a Canopus star sensor, and the IRU equipped with internal gyros. Communications were via a 10 W transmitter and the directional 1 meter diameter high gain antenna for transmission of photographs and a 0.5 W transmitter and omnidirectional low gain antenna for other communications. Both antennas operated in the S-band at 2295 MHz. Thermal control was maintained by a multilayer aluminized mylar and dacron thermal blanket which enshrouded the main bus, special paint, insulation, and small heaters.

The Lunar Orbiter program was managed by NASA Langley Research Center and consisted of building and launching 5 Lunar Orbiters which returned photography of 99% of the surface of the Moon (near and far side) with resolution down to 1 meter. Altogether, the Orbiters returned 2180 high resolution and 882 medium resolution frames. The micrometeoroid experiments recorded 22 impacts showing the average micrometeoroid flux near the Moon was about two orders of magnitude greater than in interplanetary space but slightly less than the near Earth environment. The radiation experiments confirmed that the design of Apollo hardware would protect the astronauts from average and greater-than-average short term exposure to solar particle events. The use of Lunar Orbiters for tracking to evaluate the Manned Space Flight Network tracking stations and Apollo Orbit Determination Program was successful, with three Lunar Orbiters (2, 3, and 5) being tracked simultaneously from August to October 1967. The Lunar Orbiters were all eventually commanded to crash on the Moon before their attitude control gas ran out so they would not present navigational or communications hazards to later Apollo flights.
ref: nssdc.gsfc.nasa.gov

1971
NASA's Apollo 15 astronauts collected an ancient Lunar sample nicknamed the "Genesis Rock."

Apollo 15 was the fourth mission in which humans walked on the Lunar surface and returned to Earth: On 30 July 1971, Apollo 15 Commander David R. Scott and LM pilot James B. Irwin landed in the Hadley Rille/Apennines region of the Moon in the Lunar Module (LM) while the Command and Service Module (CSM), with CM pilot Alfred M. Worden, continued in Lunar orbit. During their stay on the Moon, the astronauts set up scientific experiments, took photographs, and collected Lunar samples. The LM took off from the Moon on 2 August, and the astronauts returned to Earth on 7 August.

Apollo 15 was launched on 26 July 1971 on Saturn V SA-510 from Pad 39A at the Kennedy Space Center, Florida. The spacecraft was inserted into Earth orbit 11 minutes 44 seconds after liftoff, at 13:45:44 UT, and translunar injection took place at 16:30:03 UT. The CSM separated from the S-IVB stage at 16:56:24 UT, and docked with the LM at 17:07:49 UT, televised using an onboard color camera.

The S-IVB stage was released and sent into a Lunar impact trajectory, impact occurring on 29 July at 20:58:42.9 UT at 1.51 S, 11.81 W with a velocity of 2.58 km/s (5760 mph) at a 62 degree angle from the horizontal, 188 km (117 mi) northeast of the Apollo 14 landing site and 355 km (221 mi) northeast of the Apollo 12 site. The impact was detected by both the Apollo 12 and Apollo 14 seismometers, left on the moon in November 1969 and February 1971.

A short was discovered in the service propulsion system, and contingency procedures were developed for using the engine. A mid-course correction was performed on 27 July at 18:14:22 UT and another on 29 July at 15:05:15. During the translunar cruise, it was discovered that the LM range/range-rate exterior glass cover had broken and a small water leak had developed in the CM requiring repair and clean up, in part to avoid breathing in the glass shards. The Scientific Instrument Module (SIM) door was jettisoned at 15:40 UT on 29 July, and Lunar orbit insertion took place at 20:05:47 UT. The descent orbit maneuver was executed at 00:13:49 UT on 30 July.

Scott and Irwin entered the LM and the LM-CSM undocking maneuver was initiated at 17:48 UT, but undocking did not take place. Worden found a loose umbilical plug and reconnected it, allowing the LM to separate from the CSM at 18:13:30 UT. The LM fired its descent engine at 22:04:09 UT and landed at 22:16:29 UT on 30 July 1971 in the Mare Imbrium region at the foot of the Apennine mountain range at 26.1 N, 3.6 E, 600 meters 2000 ft) north-northwest of the proposed target. The CSM remained in a slightly elliptical orbit from which Worden performed scientific experiments.

About two hours after landing, following cabin depressurization, Scott performed a 33 minute 7 second standup EVA in the upper hatch of the LM, during which he described and photographed the landing site.

The first crew EVA on the Lunar surface began at 13:04 UT 31 July. The crew collected and stowed a contingency sample, unpacked the ALSEP and other experiments, and prepared the Lunar Roving Vehicle (LRV) for operations. Some problems were encountered in the deployment and checkout of the LRV, used for the first time, but they were quickly resolved. The first EVA traverse was to the Apennine mountain front, after which the ALSEP was deployed and activated, and one probe of a Heat Flow experiment was emplaced. A second probe was not emplaced until EVA-2 because of drilling difficulties. The first EVA lasted 6 hours 32 minutes 42 seconds.

The second EVA began at 11:49 UT 1 August. The astronauts made a maintenance check on the LRV, then began the second planned traverse of the mission. On completion of the traverse, Scott and Irwin completed the placement of heat flow experiment probes, collected a core sample, and deployed the American flag. They then stowed the sample container and the film in the LM, completing a second EVA of 7 hours 12 minutes 14 seconds.

The third EVA began at 8:52 UT 2 August, included another traverse, and ended 4 hours 49 minutes 50 seconds later. After the final EVA, Scott performed a televised demonstration of a hammer and feather falling at the same rate in the Lunar vacuum.

The total Apollo 15 Lunar surface EVA time was 18 hours 34 minutes 46 seconds. During the three moonwalks, Scott and Irwin covered 27.9 km (17.3 mi), collected 76.8 kg (170 pounds) of rock and soil samples, took photographs, and set up the ALSEP and performed other scientific experiments. This was the first mission to employ the LRV, used to explore regions within 5 km (3 mi) of the LM landing site.

While the Lunar Module was on the Moon, Worden completed 34 Lunar orbits in the CSM, operating SIM experiments and cameras to obtain data concerning the Lunar surface and environment. The SIM equipment included a panoramic camera, gamma ray spectrometer, mapping camera, laser altimeter, and a mass spectrometer. X-ray spectrometer data indicated a richer abundance of aluminum in the highlands, especially on the far side, but greater concentrations of magnesium in the maria.

The LM ascent stage lifted off from the Moon at 17:11:22 UT on 2 August, televised for the first time, after 66 hours, 55 minutes on the Lunar surface. After the LM docked with the CSM at 19:09:47 UT, the Lunar samples, film, and other equipment were transferred from the LM to the CSM. The LM was jettisoned at 01:04:14 UT on 3 August, after a one orbit delay to ensure LM and CSM hatches were completely sealed. The LM impacted the Moon on 3 August 03:03:37.0 UT at 26.36 N, 0.25 E, 93 km west of the Apollo 15 ALSEP site, with an estimated impact velocity of 1.7 km/s (3800 mph) at an angle of ~3.2 degrees from horizontal. Its impact was recorded by the Apollo 12, Apollo 14, and Apollo 15 seismometers, left on the Moon during each of those missions.

Experiments were performed from orbit over the next day. After Apollo 15 executed an orbit-shaping maneuver, the scientific subsatellite was spring-launched from the SM SIM bay at 20:13:19 UT on 4 August into a 102.0 x 141.3 km (63.4 x 87.8 mi) Lunar orbit. The satellite measured interplanetary and Earth magnetic fields near the Moon, and carried charged-particle sensors and equipment to detect variations in Lunar gravity caused by mascons (mass concentrations).

Transearth injection began on the next orbit with a 2 minute, 21 second main engine burn at 21:22:45 UT. On 5 August, Worden carried out the first deep space EVA when he exited the CM and made three trips to the SIM bay at the rear of the SM to retrieve film cannisters and check the equipment. Total EVA time was 38 minutes, 12 seconds.

The CM separated from the SM at 20:18:00 UT on 7 August. During descent, one of the three main parachutes failed to open fully, resulting in a descent velocity of 35 km/hr (21.8 mph), 4.5 km/hr (2.8 mph) faster than planned, causing a hard but safe landing. Apollo 15 splashed down in the Pacific Ocean on 7 August 1971 at 20:45:53 UT (4:45:53 PM EDT) after a mission elapsed time of 295 hours, 11 minutes, 53 seconds (12 days 7 hours 12 minutes). The splashdown point was 26 deg 7 min N, 158 deg, 8 min W, 330 miles (530 km) north of Honolulu, Hawaii and 9.8 km (6.1 mi) from the recovery ship USS Okinawa. The astronauts were carried to the ship by helicopter, and the CM was retrieved and placed on board.

Performance of the spacecraft, the first of the Apollo J-series missions (long duration stays on the Moon with a greater focus on science than on previous flights), was excellent for most aspects of the mission. The primary mission goals of exploration of the Hadley-Appenine region, deployment of the ALSEP and other scientific experiments, collection of Lunar samples, surface photography, and photography and other scientific experiments from orbit, and engineering evaluation of new Apollo equipment, particularly the rover, were achieved. Scott, 39, was an Air Force Colonel on his third spaceflight (he'd flown previously on Gemini 8 and Apollo 9), Worden, 39, was an Air Force Major on his first spaceflight, and Irwin, 41, was an Air Force Lt. Colonel also on his first spaceflight.

The Apollo 15 command module "Endeavor" is on display at the USAF Museum at Wright-Patterson Air Force Base, Dayton, Ohio.

See also the pages for the Apollo 15 Lunar Module /ALSEP and the Apollo 15 SIVB

The Apollo program included a large number of uncrewed test missions and 12 crewed missions: three Earth orbiting missions (Apollo 7, 9 and Apollo-Soyuz), two Lunar orbiting missions (Apollo 8 and 10), a Lunar swingby (Apollo 13), and six Moon landing missions (Apollo 11, 12, 14, 15, 16, and 17). Two astronauts from each of the six missions walked on the Moon (Neil Armstrong, Edwin Aldrin, Charles Conrad, Alan Bean, Alan Shepard, Edgar Mitchell, David Scott, James Irwin, John Young, Charles Duke, Gene Cernan, and Harrison Schmitt), the only humans to date (2014) to have set foot on another solar system body.
ref: nssdc.gsfc.nasa.gov

1973
NASA pilot John Manke made the first glide test flight (X-24 Flight 29) of the unpowered manned X-24B lifting body, with a maximum speed of 460 mph (740 kph) from release at 40,000 ft (12.192 km, 7.575 mi) in a 252 second flight.
ref: www.nasa.gov

1976
Construction was begun of the overland roadway from Palmdale to Edwards Air Force Base, to be used for transporting Space Shuttle orbiters to and from the manufacturing plant.
ref: science.ksc.nasa.gov

1981
Harvard College discovered asteroid #3401.

1987 03:59:00 GMT
USSR launched Cosmos 1871 from Baikonur, officially to investigate the upper atmosphere and outer space, believed by some observers to be a "spite test" of the Uragan space interceptor boilerplate mass model, just prior to the project's cancellation.
ref: nssdc.gsfc.nasa.gov

1990 09:32:00 GMT
USSR launched Soyuz TM-10 from Baikonur to the Mir space station with the Mir Expedition EO-07 crew aboard.

USSR launched Soyuz TM-10 from Baikonur to Mir on 1 August 1990, transporting to the Mir manned orbital station the Mir Expedition EO-07 crew consisting of cosmonauts G. M. Manakov and G. M. Strekalov, for the purpose of carrying out a program of geophysical and astrophysical research, biological and biotechnological experiments, and work on space-materials science. The capsule docked with Mir on 3 August 1990, and returned to Earth on 10 December 1990.
ref: nssdc.gsfc.nasa.gov

1991 11:44:00 GMT
USSR launched Molniya 1-82 from Plesetsk for operation of the long range telephone and telegraph radio communications system in the USSR, and for transmission of USSR Central Television programs to stations in the Orbita network.
ref: nssdc.gsfc.nasa.gov

1997 20:20:00 GMT
The Seastar (Orbview-2) civilian surveillance satellite was launched into orbit from Vandenburg, California, using a Pegasus XL booster.
ref: nssdc.gsfc.nasa.gov

2014
To celebrate the 10 year launch anniversary, the MESSENGER team at John Hopkins University's Applied Physics Laboratory released a flyover movie made from frames taken on 8 June 2014 passing the North polar region at 3.7 km/s and 115 to 165 km altitude.

The Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) mission was designed to study the characteristics and environment of Mercury from orbit. Specifically, the scientific objectives of the mission were to characterize the chemical composition of Mercury's surface, the geologic history, the nature of the magnetic field, the size and state of the core, the volatile inventory at the poles, and the nature of Mercury's exosphere and magnetosphere over a nominal orbital mission of one Earth year.

MESSENGER launched into a parking orbit on 3 August 2004 on a Delta 7925H (a Delta II Heavy launch vehicle with nine strap-on solid-rocket boosters). The Delta booster second stage's second burn raised the orbit, then the PAM-D solid motor burned to put the probe on an escape trajectory into a 0.92 x 1.08 AU x 6.4 deg heliocentric orbit. The spacecraft was injected into solar orbit 57 minutes after launch. The solar panels were then deployed and the spacecraft began sending data on its status.

One year after launch, on 2 August 2005, MESSENGER flew by Earth at an altitude of 2347 km. On 12 December 2005 at 11:30 UT, MESSENGER fired its large thruster for 524 seconds, changing the spacecraft velocity by 316 m/s and putting it on course for its 24 October 2006 Venus flyby at an altitude of 2990 km. The second Venus flyby took place on 5 June 2007 at 23:08 UT (7:08 p.m. EDT) at an altitude of approximately 337 km. The first of three Mercury flybys, all at roughly 200 km altitude, occurred on 14 January 2008 at 19:04 :39 UT, and the second on 6 October 2008 at 08:40:22 UT. The third took place on 29 September 2009 at 21:54:58 UT at a distance of 228 km. There were also five deep space manuevers. Data collected during the Mercury flybys was used to help plan the scientific campaign during the orbital phase.

Mercury orbit insertion took place with a 15 minute burn starting at 00:45 UT on 18 March 2011 (8:45 p.m. 17 March EDT) requiring a delta-V of 0.862 km/s from the Aerojet 660N engine. Science observations began on April 4 at 20:40 UT (4:40 p.m. EDT). The nominal orbit had a periapsis of 200 km at 60 degrees N latitude, an apoapsis of 15,193 km, a period of 12 hours and an inclination of 80 degrees. The periapsis slowly rose due to solar perturbations to over 400 km at the end of 88 days (one Mercury year) at which point it was readjusted to a 200 km, 12 hour orbit via a two burn sequence.

Data was collected from orbit for one Earth year, the end of the primary mission was in March 2012. Extensions to the mission allowed the spacecraft to operate for an additional 3 years until the propellant necessary to maintain its orbit was exhausted. The MESSENGER spacecraft impacted the surface of Mercury as planned on 30 April 2015 at 19:26 UT (3:26 p.m. EDT).

Global stereo image coverage at 250 m/pixel resolution was completed. The mission has also yielded global composition maps, a 3-D model of Mercury's magnetosphere, topographic profiles of the northern hemisphere, gravity field, altitude profiles of elemental species, and a characterization of the volatiles in permanently shadowed craters at the poles.

The MESSENGER spacecraft was a squat box (1.27 m x 1.42 m x 1.85 m) with a semi-cylindrical thermal shade (roughly 2.5 meters tall and 2 meters wide) for protection from the Sun and two solar panel wings extending radially about 6 meters from tip to tip. A 3.6 meter magnetometer boom also extended from the craft. The total mass of the spacecraft was 1093 kg, 607.8 kg of which was propellant and helium. The structure was primarily graphite-cyanate-ester (GrCE) composite and consisted of two vertical panels which supported two large fuel tanks, and two vertical panels which supported the oxidizer tank and plumbing panel. The four vertical panels made up the center column and were bolted at their aft ends to an aluminum adapter. A single top deck panel mounted the LVA (large velocity adjust) thruster, small thrusters, helium and auxiliary fuel tanks, star trackers and battery.

Main propulsion was via the 645-N, 317-s bipropellant LVA thruster, four 22-N monopropellant thrusters providing spacecraft steering during main thruster burns, and ten 4-N monopropellant thrusters used for attitude control. There was also a reaction-wheel attitude control system. Knowledge for attitude control was provided by star tracking cameras, an inertial measurement unit, and six solar sensors. Power was provided by the solar panels, which extended beyond the sunshade and were rotatable to balance panel temperature and power generation, and provided a nominal 450 W in Mercury orbit. The panels were 70% optical solar reflectors and 30% GaAs/Ge cells. The power was stored in a common-pressure-vessel nickel-hydrogen battery, with 11 vessels and 2 cells per vessel.

Communications were in the X-band, with downlink through two fixed phased-array antenna clusters, and uplink and downlink through medium- and low-gain antennas on the forward and aft sides of the spacecraft. Passive thermal control, primarily a fixed opaque ceramic cloth sunshade, was utilized to maintain operating temperatures near the Sun. Radiators were built into the structure and the orbit was optimized to minimize infrared and visible light heating of the spacecraft from the surface of Mercury. Multilayer insulation, low conductivity couplings, and heaters were also used to maintain temperatures within operating limits.

Five science instruments were mounted externally on the bottom deck of the main body: the Mercury Dual Imaging System (MDIS), Gamma-Ray and Neutron Spectrometer (GRNS), X-ray Spectrometer (XRS), Mercury Laser Altimeter (MLA), and Atmospheric and Surface Composition Spectrometer (MASCS). The Energetic Particle and Plasma Spectrometer (EPPS) was mounted on the side and top deck and the magnetometer (MAG) was at the end of the 3.6 m boom. Radio Science (RS) experiments used the existing communications system.

The highly successful orbital mission came to an end after more than four years in orbit around Mercury, as the spacecraft ran out of propellant and the force of solar gravity caused it to impact the surface of Mercury at 3:26 p.m. EDT on 30 April 2015.

More information about the spacecraft and its research results can be found on the MESSENGER Web site at John Hopkins University's Applied Physics Laboratory.
ref: messenger.jhuapl.edu
ref: nssdc.gsfc.nasa.gov


We are going to run out of oil!
Visit SpacePowerNow.org to help fix the problem.
SpacePowerNow.org - For Human Survival


Please help support our efforts by shopping from our sponsors.

NOCO Genius Smart Battery Chargers for Cars, Boats, Motorcycles and more.

Spacecraft Posters in affiliation with AllPosters.com

In affiliation with AllPosters.com

Microsoft Store banner

468x60 Military Gifts pixel

Mead.com banner


This newsletter and its contents are
Copyright © 2006-2024 by The L5 Development Group.  All rights reserved.
 - Publication, in part or in whole, requires previous written permission.
 - Academic or personal-use citations must refer to http://L5Development.com as their source.
Thank you for your cooperation.

 

 


Space History Department
Resources
The L5 Development Group Home Page

The L5 Development Group Keyword Access System


Space History for August 1 / Webmaster / Script last modified August 23, 2018 @ 6:05 am
Copyright © 2006-2024 by The L5 Development Group. All rights reserved. Hosted by FKEinternet